Problem Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways: q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence). q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence). Following is an example of the above encodings:
S (((()()()))) P-sequence 4 5 6666 W-sequence 1 1 1456Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2
6
4 5 6 6 6 6
9
4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6
1 1 2 4 5 1 1 3 9
题意:一行括号数列,分别给出第i个右括号前有多少个左括号;要求求出与第i个右括号相对应的左括号所形成的括号对中包括多少左括号(包括本身与第i个右括号对应的左括号)
输入:
第一行:输入一个数t,表示有t组数列需要处理;接下来的2*t行,没两行是一组需要处理的数据,上一行第n表示有n个右括号;接下来的一行有n个整数;
AC代码:
1 #include2 #include 3 #include 4 #include 5 6 7 8 using namespace std; 9 10 11 int main()12 {13 freopen("1.txt","r",stdin);14 int dp[50]={ 0};//模拟数组,初始值都为0;15 int n,num,i;16 int s,j;17 int sum;18 cin>>num;//输入样例的个数;19 while(num)20 {21 22 cin>>n;//输入右括号的个数;23 for(i=0;i >j;25 dp[j+i]=1;26 }27 s=n;28 n<<=1;29 i=0;30 while(s){31 while(dp[i++]<=0);32 sum=0;33 for(j=i-2;j>=0;j--)34 {35 if(dp[j]<=0)sum++;//确定了一个左括号;36 if(dp[j]==0){dp[j]=-1;break;}//到了与相应右括号对应的左括号处,跳出循环。37 }38 cout< <<" ";//输出左括号的个数。39 s--;40 }41 cout<